Project Profile
Computational Phylogenetics and Applications to Biology
University of Texas at Austin
Abstract
Phylogenetics , the study of the relationships among genes, individuals, populations, and species, forms the basis for all of comparative biology. This IGERT grant will support a comprehensive, interdisciplinary graduate training program in Computational Phylogenetics and Applications to Biology. The program involves 27 faculty participants from the computational and biological sciences… more »
Phylogenetics , the study of the relationships among genes, individuals, populations, and species, forms the basis for all of comparative biology. This IGERT grant will support a comprehensive, interdisciplinary graduate training program in Computational Phylogenetics and Applications to Biology. The program involves 27 faculty participants from the computational and biological sciences at the University of Texas at Austin, and it will support 12 graduate trainees each year for five years.
Two major research areas will be emphasized: computational phylogenetics and applied phylogenetics. Phylogenies provide a fundamental framework for all of biology, and present the computational scientist with many technical challenges. Computational phylogenetics is concerned with the computational aspects of phylogenetic inference, and applied phylogenetics uses estimated phylogenies to address a wide diversity of biological questions. The training program will involve a series of new and existing courses and seminars, a summer training program for students from underrepresented areas of science, co-advisement of each graduate student by one computational and one biological faculty participant, placement of students into well-established research groups in biology and computer science, participation in spring recruitment conferences and fall phylogenetics retreats, and opportunities for internships in the bioinformatics industry, national laboratories, and non-government organizations.
The goals of this project are: (i) design and implement an interdisciplinary training curriculum for graduate students across computational and biological sciences that prepares students to understand and contribute to both sides of computational biology; (ii) stimulate interdisciplinary graduate research and interdisciplinary interactions in general between computational scientists and biological scientists that will lead to development and testing of novel approaches to unsolved problems in phylogenetics and their application to problems in biology; (iii) prepare trainees for their careers beyond graduate school and help them achieve visibility in the larger research community; and (iv) evaluate and improve the program in computational and applied phylogenetics to ensure its success beyond the proposed IGERT project. This program will create a unique collaborative environment for graduate students and faculty from the computational and biological sciences.
IGERT is an NSF-wide program intended to meet the challenges of educating Ph.D. scientists and engineers with the multidisciplinary backgrounds and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing new, innovative models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries. In the fourth year of the program, awards are being made to twenty-two institutions for programs that collectively span all areas of science and engineering supported by NSF. The intellectual foci of this specific award reside in the Directorates for Biological Sciences; Computer and Information Science and Engineering; and Education and Human Resources. « less