Project Profile
Graduate Training in Biologically Inspired Materials
Duke University
Abstract
The vision of the Center for Biologically Inspired Materials and Material Systems research and educational program is to map traditional engineering onto biology. Through this approach, the IGERT project seeks to establish a new curriculum for graduate education in Biologically Inspired Materials and Materials Systems. The curriculum serves as an… more »
The vision of the Center for Biologically Inspired Materials and Material Systems research and educational program is to map traditional engineering onto biology. Through this approach, the IGERT project seeks to establish a new curriculum for graduate education in Biologically Inspired Materials and Materials Systems. The curriculum serves as an integration of natural science, life science, and engineering. This program will create a new graduate training program that uses biologically inspired approaches to bridge a gap in current biomedical and bioengineering programs.
The Center’s vision is to bring nature’s engineering into the engineering curriculum and engineering principles into the study of materials, revolutionizing the way engineering and life sciences are taught at the graduate student level. Thus, this IGERT project will develop a new paradigm for education and research, using nature as an example for engineering, while explaining nature using engineering principles and rigor. This program focuses on three specific areas: (1) Bio-NanoScience and Engineering (single molecules and self-assembly), (2) Encapsulation, Coatings, and Surface Patterning (materials at the cellular scale where the lipid bilayer serves as the defining basis of all life), and (3) Hierarchical Systems (larger, more macroscopic, functional organisms). This focused approach will allow students and faculty to develop mapping concepts to the leading edge of knowledge and to explore the intellectual and practical aspects of creating a new curriculum at the interfaces of biology, medicine, engineering, and basic physical and chemical sciences. This is an initial step towards establishing a new paradigm in science and engineering education that explores life’s mechanisms at the molecular level and translates these findings up through hierarchical scales of structure and organization to bring greater understanding of mechanism to the biological organism and unique designs to engineered devices.
IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the multidisciplinary backgrounds and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries. In the fifth year of the program, awards are being made to twenty-one institutions for programs that collectively span the areas of science and engineering supported by NSF. « less
Contributions[?]
Project members' contributions to the library and showcase are listed here.